
A stochastic approach to surface reactions including energetic interactions: II. Application to

the  reaction

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1996 J. Phys. A: Math. Gen. 29 6219

(http://iopscience.iop.org/0305-4470/29/19/008)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 02/06/2010 at 03:03

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/29/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.29 (1996) 6219–6232. Printed in the UK

A stochastic approach to surface reactions including
energetic interactions: II. Application to the A + 1

2B2 → 0
reaction

J Mai†, V N Kuzovkov‡§ and W von Niessen‡
† Institut für Theoretische Polymerphysik, Universität Freiburg, Rheinstr. 12, D-79104 Freiburg,
Germany
‡ Institut für Physikalische und Theoretische Chemie, Technische Universität Braunschweig,
D-38106 Braunschweig, Germany

Received 8 January 1996, in final form 22 May 1996

Abstract. We study a stochastic model for the A+ 1
2B2 → 0 reaction with energetic interactions

between the particles. The reaction system includes adsorption, desorption, reaction and diffusion
steps which depend on energetic interactions. The temporal evolution of the system is described
by master equations using the Markovian behaviour of the system. We study the system
behaviour at different values of the energetic parameters and at varying diffusion and desorption
rates. The location and the character of the phase transition points will be discussed in detail.
The role of the constants usedin situ mean field theories such as kinetic constants etc are
discussed in view of the new theories. All such constants, if they are at all meaningful, are
functions of correlation functions and not constants. This has important implications for the
analysis of experiments.

1. Introduction

In chemical kinetics involving many particles (i.e. reactions where, not the individual steps
dictate the system behaviour, but the statistical effects arising from the large number of
particles, e.g. reactions on surfaces) one has two main approaches at hand: mean-field type
approaches (the classical chemical kinetics) or Monte Carlo (MC) type approaches. Site
mean-field approaches are sometimes transferred directly from gas-phase kinetics to surface
reactions without worrying much about the extreme limitations arising from the absence
of homogeneity, from segregation effects etc. These approaches, by definition, neglect all
correlations, but they have proven very useful for analysing experimental data and extracting
activation energies, reaction and diffusion constants, etc from experimental measurements.
This is not without substantial problems which may arise if the mean-field type equations
just do not describe the processes correctly. We shall come back to this problem below in
more detail.

In the MC approaches the correlations are included. These methods have become very
fashionable starting with the work of Ziff, Gulari and Barshad (ZGB model) [1] for the
oxidation of CO on a metal surface. Although the models used to date are still somewhat
simplistic and ignore many experimental details of the reaction steps they have proven to be
very useful and they are capable of describing certain aspects of the reaction if experiment
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and the ‘MC reaction’ are performed in a way corresponding to each other [2]. Many MC
simulations for different aspects have been performed on the CO oxidation reaction [3–18].

Energetics is rarely included in the MC simulations so far, with the exception of
approaches in [19–21]. There are two reasons for the rareness of such investigations.
First, the experimental data for energetic interactions are, at least on metal surfaces, in
general not available and if data exist they frequently refer to surfaces at high coverages,
i.e. these data already contain the effect of energetic interactions among the particles,
which is inappropriate. Secondly, the inclusion of energetic interactions is difficult and
computationally costly. The investigations in [19–21] demonstrate the strong influence
of interactions on the system behaviour for the case of the CO oxidation. But these
approaches have also to be criticized. They include the energetic effect of the environment
on irreversible reactions, which, from statistical mechanics, is incorrect (see the preceding
paper [22], referred to as paper I in the following). Also, for no apparent reason, some
individual steps are included and related ones left out. In one approach adsorption is made
dependent on energetic interactions but not desorption, in the other it is vice versa, but no
argument is given for either.

We have presented in paper I [22] a general stochastic theory for surface reactions
including energetic interactions among the particles. This theory consists of the equation of
motion for thei-point probabilities and the truncation of this hierarchy of equations via the
Mamada–Takano [23] and the Kirkwood [24] superposition approximation and of a standard
statistical mechanical model following the work of Kawasaki [25]. An important directive
emerges automatically from this standard model. An irreversible reaction cannot depend on
energetic interactions with the neighbourhood. In other words, if one reaction depends on
the neighbourhood (e.g. adsorption), then so does the reverse reaction as well (desorption
in this case). This is also the reason why in the present paper we shall not deal with the
activation energy of the CO2 formation. The reaction is conducted irreversibly—CO2 leaves
the surface.

This stochastic theory is an extension of previous work dealing with surface reactions
[26–29]. We have compared the results of the stochastic ansatz with the MC simulation of
the ZGB model (see table 1). Even for a phase transition point of second order (y1) we
found good agreement with MC simulations [27].

Table 1. Second-order phase-transition points of the ZGB model without energetic interactions
obtained by different methods.

Method y1

MC simulation [1] 0.395
Correlation analysis [27] 0.395
Cluster approximation [29] 0.258
Pair mean field [32] 0.250
Site mean field [8] 0.000

In the present article the A+ 1
2B2 → 0 (or CO+ 1

2O2 → CO2) reaction will be studied
by the new stochastic theory including energetic interactions. The ZGB model takes the
following steps into account:

A + S → A − S (1)

B2 + 2S→ 2B − S (2)

A − S+ B − S → 2S (3)
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where S denotes a free lattice site and A and B are the reactant particles of interest. Many
studies of this system have been performed because of its similarity to surface reaction
systems. It has been shown [2] that some aspects of the behaviour of this system are in
agreement with the heterogeneously catalysed oxidation of CO. In this case A stands for
a CO molecule, B2 for an O2 molecule and S for a free-metal site which represents the
catalyst. Equation (1) then shows the event of a CO-adsorption on a free-surface site,
(2) the dissociative adsorption of O2 which requires two adjacent vacant sites and (3) the
instantaneous reaction of adsorbed CO and O to CO2 which desorbs immediately from the
surface.

The most prominent feature of the original ZGB model is the existence of kinetic phase
transitions. Denoting the mole fraction of CO in the gas phase byyCO (and therefore
yO2 = 1− yCO), one finds a reactive interval 0.395= y1 < yCO < y2 = 0.525 [1] in which
both particle types are co-existing on the surface. ForyCO < y1 and for yCO > y2 the
surface is completely covered by O2 or CO, respectively. The phase transitions are found
to be of second order aty1 and of first order aty2; see table 1.

By the effect of CO-diffusion (a very common process at the normal temperatures of
the CO oxidation) the value ofy2 is increased and reaches the stochiometric value of2

3 in
the limit of an infinite diffusion rate [8, 10]; see, however, [30]. Because of the irreversible
character of the model (1)–(3) a completely covered surface (by one species) means that the
system cannot escape from this state (absorbing state) and therefore no further reactions can
take place. In terms of the catalytic CO oxidation this is a state which describes a poisoned
catalyst. The value ofy2 = 2

3 is in agreement with experimental observations [31].
In order to get a more realistic model, additional aspects have been taken into account.

The CO-desorption can be modelled by

A − S → A + S. (4)

The additional aspect of CO desorption (equation (4)) leads to the disappearance of the
CO-poisoned state [9, 15] because at every value ofyCO adsorbed CO molecules are able
to leave the surface.

Many other investigations under various conditions have been performed [3–18], and
also energetic interactions have been studied [19–21].

In the stochastic method we have to treat the A+ 1
2B2 → 0 (or CO+ 1

2O2 → CO2)
reaction as a model system for studying the effects of energetic interactions because the ‘true
experimental’ energetic interaction parameters referring to a surface at very low coverage
are not available. We shall study the effects of the particle interactions on the position and
character of the poisoning phase transitions, the reaction constant, reaction rate, etc. We
shall consider repulsive and attractive interactions, diffusion, A adsorption and desorption,
B2 adsorption, but also B2 desorption in some detail.

The paper also serves another purpose, however. There are, as mentioned above, basic
conceptual problems in the interpretation of experimental data. We are going to raise the
question, what is the reaction constant in the new theory, does such a quantity exist? The
answer will be simply, no. The reaction ‘constant’ is a function of the local configuration
and thus of time. Another question deals with the sticking coefficient, which is frequently
introduced into the adsorption terms of the kinetic equations and which is useful in analysing
experimental data. Obviously a sticking coefficient is a quantity to be evaluated from
scattering theory. Can it appear in a proper way in kinetic equations or stochastic equations?
The answer is again, no. A third question deals with the diffusion constant. Diffusion is
the fastest process in the present case, yet a diffusion term does not exist in the kinetic
equations (but in the stochastic equations). Also it can be shown under certain premises
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that the surface reaction is entirely diffusion controlled, but this finds no expression in the
equations. These three points (and some other ones) point to severe conceptual problems of
the site mean field equations. Actually the inclusion of energetic interactions leads to even
more severe problems than is the case in their absence.

The paper is structured as follows. In section 2 we give the necessary definitions of
the model and discuss some conceptual problems; for details see [22, 26]. The results are
discussed in section 3.

2. The model

We use a square lattice with coordination numberz = 4. The model can be described by

dCA

dt
= pAC0 − kACA − KCACB (5)

dCB

dt
= pBC2

0 − kBC2
B − KCACB (6)

whereCλ is the density (concentration) of particles of typeλ on the surface (λ = A, B, 0).
The sum ruleCA + CB + C0 = 1 holds. pA andpB are the adsorption andkA andkB are
the desorption rates for the A and B particles, respectively, andK is the reaction constant.
In the equations written above the first terms describe the creation of particles, the second
ones represent the desorption and the last terms describe the reaction between an A and a
B particle. In a site mean-field modelk, p andK are constants which do not depend on the
particle distributions. In the case that spatial correlations are taken into account (but without
energetic effects), some of the parameters become dependent on the particle distributions:

pA = p0
A kA = k0

A pB = p0
BF00(1) (7)

kB = k0
BFBB(1) K = R0FAB(1) (8)

where the variables with superscript 0 do not depend on the particle distributions.Fλµ(1)

with λ, µ ∈ {A, B, 0} is the correlation function between nearest neighbours,ρλµ =
CλCµFλµ(1). In the extended ZGB modelp0

A = yA = yCO , p0
B = 2(1− yA) = 2(1− yCO)

andK = R0FAB(1) with R0 → ∞. In the ZGB modelR0 is infinite for nearest neighbours
but the macroscopic reaction constantK is finite becauseFAB(1) goes to zero. This is a
simple example for the fact that between true constants (with superscript 0) and effective
variables (without superscript 0) there may be a vast difference if these quantities are
configuration dependent. The variableK, e.g. is not a constant but a structure and thus
time-dependent variable (see below for an example). For the case of energetic interactions
all parameters appearing in equations (5) and (6) depend on the particle distributions and
therefore on the correlation functions. In order to solve these equations for the temporal
evolution of the system we use thestandard modeldiscussed in [22] and an improvement
of the Kirkwood approximation [24] (discussed in [27]) to handle the problem which is
necessitated by the fact thatR0 goes to infinity.

Let us discuss a few examples. It is known from previous work [27] that without the
correlation functionF00(1) it is impossible to describe a second-order phase transition in the
ZGB model. It is commonly assumed that inpA andpB a sticking coefficient appears, e.g.
pB = PB2ks, wherePB2 is the partial pressure of B2 in the gase phase,k is a flux constant
and s a sticking coefficient. The sticking coefficient is certainly a useful concept, but one
should not forget that it stems from scattering. A sticking coefficient can in principle depend
on the densities. Thus one may suggests ∝ F00(1). But we know already that at the second
order phase transition aty1 F00(1) → ∞. This would mean that a sticking coefficient could
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be infinite, which is certainly not meaningful. A sticking coefficient cannot be defined
properly in a stochastic nor in a mean field approach, it is a concept from scattering.

As the next example let us turn to diffusion. Where is the diffusion in equations (5)
and (6)? The equations know of no diffusion! But the diffusion constant is the largest
parameter of all which occur in the CO+ O2 reaction. It should play a very prominent
role and the stochastic theory needs this parameter and makes use of it, whereas site mean-
field approaches simply ignore it because diffusion enters only via two (and more) point
distribution functions. Yet there is another aspect to it. Let us assume that the assumption
of the ZGB model thatR0 → ∞ is valid also in reality (which is nearly true). Then we
can calculate the reaction constant analytically. Formally it is given by

K = ρ̃AB

CACB

. (9)

Here

ρ̃AB = lim
R0→∞

R0ρAB = CACB lim
R0→∞

R0FAB(1) = CACBK. (10)

The quantityρ̃AB was calculated in a previous article [27] (equations (28) and (35))

ρ̃AB = p0
AC0g(β) + p0

Bρ00h(α) + DρA0h(β) (11)

whereD is the frequency factor of diffusion andg andh are polynomials

h(x) = 1 − (1 − x)3 g(x) = 1 − (1 − x)4 (12)

with α = ρA0/C0, β = ρB0/C0. This variableρ̃AB describes not only the reaction of
particles, when they are on the surface (the third term), but also the formation of nearest
neighbour AB-pairs via adsorption (the first two terms). Only the third term is proportional
to a product ofCA andCB (the bimolecular reaction, see section 2 of [27]). The first two
terms change the effective adsorption rates. Let us takeK as the value of the reaction
constant on an empty surface (CA, CB → 0, C0 → 1) without correlations between the
particles (Fλµ(1) = 1) and without the additional creation of particles (p0

A = p0
B = 0). Via

the reactionFAB(1) = 0, but (11) does not make use of it. From (9) and (11) one obtains
K = 3D, i.e. we have a totally diffusion-controlled reaction.K is proportional toD. To
explain the difference we need to take into account the energetic interaction of the particles.
If we do this we obtain (see section 7 of [22])

K = 6D
ω

1 + ω
with ω = exp(−EAB/kBT ). (13)

In the case without energetic interactions (EAB = 0) we obtainω = 1 and therefore the
resultK = 3D as discussed above.

The derivation of the last equation is straight forward: consider a 0B configuration in
which the central site is empty. In order to form an AB pair an A particle has to jump to
the central site. There are three different sites from which the A can jump to the central
site. ThereforeK = 3QWeq with Q = Q(0A|A0) = 2D (for the definition ofWeq see
section 7 of [22]). Furthermore the start configuration has the energyE = 0 because there
is no particle interaction. After forming the AB pair (but before reaction) it has the energy
E = EAB . This explains the form ofω. The factorω/(1 + ω) follows from the Gibbs
distribution for the diffusion process.

If EAB/kBT � 1 we obtainω � 1 andK ≈ 6D exp(−EAB/kBT ). In this way a
stochastic theory with energetics explains a difference in the activation energy.

Next let us illustrate this and the ‘constancy’ of the reaction ‘constant’ and some other
parameters by an example. We chooseEAB/kBT = 5, EAA = EBB = 0 and D to be very
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Figure 1. The reaction constant, the production rateRAB = RCO2 and the densitiesCA, CB as
a function of time for very fast diffusion and strong A–B repulsion.

large. The temporal behaviour of the system is illustrated in figure 1. The B particles first
form islands as usually observed for this reaction and then fight against the fast diffusing
and thus very reactive A particles. Because of the strong repulsion the reaction rate (defined
asRAB = RCO2 = KCACB) is exceedingly small. But the B particles finally become loose
and almost suddenly all islands, which in the meantime have become very small, disappear
from the surface. The reaction constant increases by a factor of 105 and the production rate
RAB by a factor of 103.

There is one more point which should be mentioned—a complication arising in the
case of energetic interactions between the particles. In the mean field approach one usually
assumes that a generalization could be that the ‘true’ constants be replaced by functions of
densities, interaction energies and temperatures, i.e they become effective parameters. For
example

pA = p0
AS(C, E, T ). (14)

The stochastic theory says that this is not correct. The effective parameters can only be
calculated approximately, and the defining equation is totally different

pA = QS(C, F, E, T ). (15)

S depends on the correlation functions. It is also important to realize that the frequencies
p0

A or k0
A (for an empty surface) do not, as in mean-field theories, appear as prefactors.Q

andS are now the functions (see section 8 of paper I)

Q = p0
A + k0

A S = S

(
k0
A

p0
A

)
(16)

i.e. the adsorption rate is also a function of the desorption frequency.
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3. Results

3.1. Repulsive interactions

First we study the system without the effect of B desorption (k0
B = 0). This case is realistic

for the oxidation of CO because the O atoms (B particles) are strongly bound to the metal
surface and desorption is a process which does not occur at the normal temperatures used
for this reaction. In this case the parameterEBB does not play a role because the transition
probabilities for the A and B particles depend onk0

A/p0
A and on k0

B/p0
B , respectively.

Therefore we have reduced the number of energetic parameters to two (EAA and EAB).
In the following we give all values ofE in kBT units.

Figure 2. The densitiesCA, CB and the production rateRAB = RCO2 are shown as a function
of yA = yCO for k0

A = 0.05 andD = 0. The energetic parameters are:EAA = EAB = 0 (curve
1), EAA = 1, EAB = 0 (curve 2),EAA = 0, EAB = 1 (curve 3) andEAA = EAB = 1 (curve
4).

In figure 2 the coverages of A and B and the production rateRAB are shown as a
function of yA. We use a large desorption rate and no diffusion. For curve 1 we have
EAA = EAB = 0. This corresponds to the case of the ZGB model with A desorption. The
value of y1 is not shifted by the desorption because at this point too few A particles are
present. Complete occupation of the lattice by A does not occur because at every time step
A particles have the chance to desorb from the surface. Both facts are in agreement with
the corresponding MC simulation [9].

In curve 2 we switch on the A–A repulsion. Due to the repulsion the phase transition
at y2 nearly disappears and we obtain a very smooth transition. The coverages are not
influenced byEAA for small values ofyA which arises from the small number of A particles
in this region.

Curve 3 shows the diagram forEAA = 0 and forEAB = 1. The parameterEAB shifts
the critical pointy1 dramatically to larger values ofyA which means that the complete
occupation of the lattice by B can take place more easily. This is understandable from the
fact that the A-adsorption probability is decreased by the repulsion with the B particles,
which are the dominant species on the lattice. Therefore the tendency of the B particles to



6226 J Mai et al

Figure 3. The densitiesCA, CB and the production rateRAB = RCO2 are shown as a function
of yA = yCO for k0

A = 0.01 andD = 0. The energetic parameters are:EAA = 1, EAB = 0
(curve 1),EAA = 0, EAB = 1 (curve 2) andEAA = EAB = 1 (curve 3).

form large clusters is enhanced. This can be seen fromRAB which is for yA < y2 nearly
zero and rises sharply atyA ≈ y2.

In curve 4 we haveEAA = EAB = 1. This results in a smooth transition aty2 for the
A density (caused byEAA) and a phase transition aty1 at large values ofyA (caused by
EAB). The parameterEAA is important for large values ofCA (i.e. for large values ofyA)
andEAB dominates the system behaviour at large values ofCB (i.e. for small values ofyA).

In figure 3 we study the system for the case of a small desorption rate of A particles
and no diffusion. The system behaviour is strongly influenced by the desorption. Due to
the smaller desorption rate (compared to the previous figure) the phase transition pointy2

is shifted to lower values ofyA and the transition appears to be sharper. Also the phase
transition pointy1 is shifted to lower values ofy1 in the cases of curves 2 and 3 which
means that B poisoning is more difficult to achieve due to the reaction with A particles
sitting on the surface. This effect is particularly important in the case of curve 3 (compare
with curve 4 from the previous figure, where the critical pointy1 is located at larger values
of yA). Here more A particles are present and the desorption plays a significant role.

How does the system behaviour change under the influence of diffusion together with
A–A repulsion (see figure 4)? The diagram is plotted for larger values ofyA because for
smaller values the diffusion plays no role. Under the influence of diffusion, the phase
transition pointy2 is shifted to larger values ofyA because the fast moving A particles
remove small B clusters via reaction from the lattice. On the lattice cleared in this way
the B2 particles have a larger probability to find two adjacent free sites to adsorb and build
large clusters (the density of B particles increases). Therefore the complete occupation with
A takes place at larger values ofyA compared to the case without diffusion. This result is
in agreement with MC simulations [8]. The maximum value of the production rate is also
shifted to larger values ofyA in accordance with the shift of the A density to larger values
of yA. In the limited case of a well-stirred system we would obtain that the maximum rate
is located at the stoichiometric gas phase composition (yA = 2

3) [8]. The parameterEAA

acts in the same way as discussed for the previous figure.
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Figure 4. The densitiesCA, CB and the production rateRAB = RCO2 are shown as a function
of yA = yCO for k0

A = 0.05 andEAB = 0. The parameters are:EAA = 0, D = 0 (curve 1),
EAA = 0, D = 10 (curve 2),EAA = 1, D = 0 (curve 3) andEAA = 1, D = 10 (curve 4).

Figure 5. The effective sticking coefficientpA/p0
A as a function ofyA = yCO for k0

A = 0.05
(curve 1) and fork0

A = 0.01 (curve 2). The energetic parameters areEAA = 1, EAB = 0 (full
curve);EAA = 0, EAB = 1 (broken curve) andEAA = EAB = 1 (chain curve).

Next we turn to the details of the reaction and study the effective sticking coefficient, the
effective desorption rate and the reaction constant. We denote by full curves the energetic
parametersEAA = 1, EAB = 0; by broken curvesEAA = 0, EAB = 1 and by chain curves
EAA = EAB = 1.

In figure 5 the ratiopA/p0
A (which represents an effective sticking coefficient for the

A particles) is shown as a function ofyA for a large and a small desorption rate. We see
that for yA < y2 only a small number of A particles is on the lattice (see above). From
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the full curves we therefore conclude that the effect of blocking and the repulsion with
other A particles plays no role and the sticking coefficient is nearly unity. For increasing
yA the sticking coefficient decreases due to the larger number of A particles on the lattice.
A larger desorption rate increases this effect because A particles located in unfavourable
configurations desorb immediately. The repulsion between A and B particles (broken curves)
is only important in the region where many B particles are present (at lower values ofyA)
resulting in a dramatic decrease of the sticking coefficient at lower values ofyA.

For the case that the A–A and the A–B interactions are both repulsive we obtain a
composite system behaviour resulting from the behaviour discussed above.

Figure 6. The effective desorption ratekA/k0
A as a function ofyA = yCO for k0

A = 0.05 (curve
1) andk0

A = 0.01 (curve 2). The energetic parameters areEAA = 1, EAB = 0 (full curve);
EAA = 0, EAB = 1 (broken curve) andEAA = EAB = 1 (chain curve).

In figure 6 the effective desorption ratekA/k0
A is shown as a function ofyA. The A–A

repulsion is important for large values ofyA resulting in an increase of the desorption rate.
The smallerk0

A the more effective is the desorption rate influenced by the A–A repulsion.
The A–B interaction plays no role in the A desorption because in our model AB pairs cannot
exist on the lattice due to the infinite reaction rate. The chain curve shows the intermediate
situation of the two cases discussed above.

The reaction constantK is shown in figure 7. It is small in the parameter region
where large clusters are formed because reaction can only occur at the border of the particle
islands. This is the case below aboutyA < 0.64. The diffusion increases the reaction rate
due to the fact that the A particles are much more reactive. There is an interesting effect
of the desorption rate in the absence of diffusion. Below aboutyA = 0.64, where large
clusters occur a smaller desorption rate reduces the reaction constantK probably because a
larger desorption rate enhances the adsorption which among others exchanges non-reactive
A particles with reactive ones. AboveyA = 0.64 a small desorption rate enhancesK

compared to a larger desorption rate because the stoichiometric particle composition on the
lattice is reached at lower values ofyA for the smaller desorption rate.

One sees easily thatK is not a constant. This quantity changes by a factor of 100 in
the present case.
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Figure 7. The reaction constantK as a function ofyA = yCO for k0
A = 0.05, D = 0 (curve 1);

k0
A = 0.01, D = 0 (curve 2) and fork0

A = 0.05, D = 10 (curve 3). The energetic parameters
areEAA = 1, EAB = 0 (full curve); EAA = 0, EAB = 1 (broken curve) andEAA = EAB = 1
(chain curve).

Figure 8. The particle densities and the production rate are shown as a function ofyA = yCO

for D = 0 and k0
A = 0.05. The energetic parameters are:EAA = EAB = 0 (curve 1);

EAA = −1, EAB = 0 (curve 2) andEAA = 0, EAB = −1 (curve 3).

3.2. Attractive interactions

So far we have treated repulsive interactions. We now turn to the investigation of systems
with attractive interactions (Eλµ < 0). In figure 8 the particle densities and the production
rate are shown as a function ofyA for D = 0 andk0

A = 0.05. Due to the attractive interaction
between A particles (curve 2) the phase transition aty2 changes its character to first order
and the value ofy2 is significantly lowered. At lower values ofyA this interaction plays
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no role due to the small number of A particles. An attractive interaction between A and B
particles (curve 3) smoothes the transition again and the resulting system behaviour is very
similar to the case without energetic interactions for larger values ofyA. The difference is
a small decrease inCA (for larger values ofyA) and a small decrease inCB (for smaller
values ofyA). This results from the attraction of A and B particles which enlarges the
probability of reactive events.

Figure 9. The particle densities and the production rate are shown as a function ofyA = yCO

for D = 0, EBB = 1 and k0
A = k0

B = 0.01. The remaining energetic parameters are:
EAA = EAB = 0 (curve 1);EAA = 1, EAB = 0 (curve 2);EAA = 0, EAB = 1 (curve 3)
andEAA = EAB = 1 (curve 4).

3.3. The influence of B desorption

We now take the additional aspect of B2 desorption into account. In figure 9 the particle
densities and the production rate are shown as a function ofyA. The phase transition at
y1 disappears due to the effect of B desorption (which is equivalent to the effect of A-
desorption aty2). The repulsive interaction of A particles (curve 2) smoothes the phase
transition aty2. EAB = 1 (curve 3) shiftsy2 to lower values ofyA. This comes from the
fact that the A particles can easily adsorb on the free sites created by B desorption. The
increased number of A particles on the lattice leads to an increased B desorption due to the
repulsive A–B interaction. In curve 4 the repulsion between the A particles leads to a shift
of y2 to larger values ofyA. A smoothing of the phase transition (cf curve 2) can only be
observed at the beginning of the phase transition point region. At larger values ofyA, CA

increases abruptly. This can be explained by the fact that at this point the B particles nearly
all have left the lattice which leads to a decrease of the repulsion on the A particles.

With the variation of the energetic parameters the value ofy2 can be shifted over a very
large range ofyA. The system behaviour at small values ofyA is much more stable against
changes of the energetic parameters.

The effective adsorption and desorption rate for B particles are much more difficult
to interpret than for the A particles because they are strongly influenced by structural
correlations. Even without energetic interactions they are of the formpB = p0

BF00(1) and
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kB = k0
BFBB(1), respectively.

Therefore one sees only a product of the adsorption (or desorption) rate and correlation
functions and in which the correlation may be very large (see [27]).

4. Conclusions

We have studied a stochastic approach including energetic interactions for an extended ZGB
model with diffusion and desorption as additional steps. We have used different values for
the diffusion and the desorption rate and different values for the energetic parameters. In
the case of repulsive interactions the system behaviour is strongly influenced byEAA for
large values ofyA and byEAB for small values ofyA. The former parameter leads to a
smooth phase transition aty2 and the latter to a sharp transition aty1. The sharpness and the
location of the phase transitions depend also on the diffusion and desorption rate of the A
particles. The A diffusion leads to an increase of the value ofy2 due to the higher reactivity
of the A particles. At lower values ofyA the system behaviour is hardly influenced by the
diffusion. The A desorption increases the values of the critical points and smoothes the
phase transition aty2. This effect becomes very important ifCA is large.

Attractive interactions between A particles change significantly the system behaviour
at y2, resulting in a decrease of the value ofy2 and the change of the character of the
phase transition to first order (second order for the case of no energetic interactions and
with desorption). We have a case similar to a condensation. This is mainly the effect of the
reduced desorption rate of the A particles which leads to the same character of the phase
transition aty2 as without the effect of desorption. The parameterEAB enlarges the effective
diffusion rate but the system behaviour is not significantly influenced by this change.

The effect of B desorption leads to the disappearance of the phase transition aty1 which
is equivalent to the effect of the A desorption aty2. The dependence of the system behaviour
on the energetic parameters is very complex. Interpretation of the results is difficult due to
the complicated adsorption and desorption rules for the B2 particles. The value of the phase
transition pointy2 can be shifted over a large range ofyA by different model parameters.

The model we presented here is well suited for the description of surface-reaction
systems including energetic interactions. The use of realistic parameters for the energetic
interactions (which are not available today) should lead to a more realistic description of
surface-reaction systems.
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